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The aeroacoustics of low-Mach-number boundary-layer flow over backward and
forward facing steps is studied using large-eddy simulation and Lighthill’s theory.
The Reynolds number based on the step height and free-stream velocity ranges from
21 000 to 328 as the step height is varied from 53 % to 0.83 % of the unperturbed
boundary layer thickness at the step. For the largest step size, statistics of wall pressure
fluctuations such as the root mean square values and frequency spectral density yield
favourable comparisons with available experimental measurements. A low-frequency
Green’s function for the step geometry, valid for an acoustically compact step height,
is employed to evaluate the volume integral in the solution to Lighthill’s equation.
Consistent with the result of previous theoretical studies, the steps act primarily as
a dipole source aligned in the streamwise direction. The sound from the forward
step is shown to be significantly louder than that from the backward step and the
underlying reason is analysed in terms of source strength and distribution relative to
the Green’s function. The forward step generates stronger sources in regions closer to
the step corner, which is heavily weighted by the Green’s function. A detailed analysis
of flow field and Green’s function weighted sources reveals that the backward step
generates sound mainly through a diffraction mechanism, while the forward step
generates sound through a combination of diffraction and turbulence modification by
the step. As the step height decreases, the difference in noise level between forward and
backward steps is much reduced as turbulence modification becomes less significant.

1. Introduction
Non-uniform surfaces of road, flight and marine vehicles can disturb the turbulent

boundary layer around the body, causing sound radiation and large surface pressure
fluctuations, which act as a source of structural vibration. Irregularities on aircraft
surfaces are one such example, where unsteady pressure fluctuations induced by rivet
heads, window cutouts and lap joints are a source of interior cabin noise (Kargus &
Lauchle 1997; Howe 1998; Lauchle & Kargus 2000). Similarly, gaps, ribs and panel
mismatches are routinely found on marine vehicles. In order to control flow-induced
sound it is necessary to understand the nature of unsteady surface pressure and
mechanisms for noise production from surface inhomogeneities immersed in turbulent
flow. In this regard, the backward and forward facing steps provide an ideal framework
for studying the relevant source processes because their geometry is simple yet they
possess complex flow features such as separation and reattachment, which lead to
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high levels of flow unsteadiness. Although the step flows – especially the backward
facing step – have been a subject of extensive research for the past few decades, the
focus has mainly been on the hydrodynamic aspects with rather limited acoustical
implications (see e.g. Bradshaw & Wong 1972; Moss & Baker 1980; Chandrsuda &
Bradshaw 1981; Eaton & Johnston 1981; Le, Moin & Kim 1997).

Wall pressure fluctuations in flows over backward and forward facing steps have
been experimentally investigated by a number of researchers (e.g. Mohsen 1968;
Farabee & Casarella 1984, 1986; Efimtsov et al. 1999, 2000; Lee & Sung 2001;
Camussi, Guj & Ragni 2006; Largeau & Moriniere 2007). Flow separation and
reattachment give rise to larger unsteady pressure fluctuations than those beneath
attached turbulent boundary layers, and their maximum occurs near the reattachment
location. Compared to the flat-plate boundary layer with zero pressure gradient, the
peak root mean square (r.m.s.) values of pressure fluctuations are 5 and 10 times
larger (Farabee & Casarella 1984, 1986), and the frequency spectra levels are up to
20 and 30 dB larger (Efimtsov et al. 1999, 2000) for the backward and forward facing
steps, respectively. The increase in wall pressure fluctuations is largely due to the
amplification of energy in the low-frequency range of the pressure spectrum, which
is caused by organized low-frequency velocity fluctuations in the free shear layer
and recirculation bubble (Farabee & Casarella 1986; Lee & Sung 2001; Largeau &
Moriniere 2007).

Experimental studies of sound radiation from flow over steps are relatively fewer
and more recent. Farabee & Zoccola (1998) measured the noise from flow over
backward and forward facing steps for free-stream velocities of 25.5 and 40.7 m s−1,
step heights of 0.76 and 1.40 cm and boundary layer thickness of approximately twice
the step height. They reported that the forward step was noisier than the backward
step; the noise level from the forward step was generally 5 dB above the background
level across all frequencies while the backward step did not produce noise greater
than the background level. Sound radiation from wall-jet flow over a backward facing
step was studied by Jacob et al. (2001) for the Mach number range of approximately
0.1–0.24 based on the maximum mean streamwise velocity above the step, and step
height up to 6 cm. By applying acoustic source localization method, which constructs
a best fitting streamwise distribution of monopoles according to measurements, they
found maximum source strength at 2.5 step heights downstream of the step, where
the strongest turbulence level was also measured. Note that this localization does not
account for the edge-scattering effect, which makes the source region closer to the
top corner of the step radiate more efficiently. Their far-field sound measurements
indicated strong upstream and downstream directivity; it became more dipole-like
as the step height and free-stream velocity were decreased, making the step more
acoustically compact. Leclercq et al. (2001) studied the acoustic field for low-Mach-
number flow over a large-aspect-ratio block (10 step heights long). Using the same
localization technique as in Jacob et al. (2001), they showed that the leading forward
facing step was the dominant source. Becker et al. (2005) measured the sound field
from flow over a forward facing step with step height of 1.2 cm and free-stream
velocity of 10–35 m s−1. They found that the resulting sound pressure level was up
to 10 dB higher than that of flow over a flat plate within the frequency range from
1 to 10 kHz. Their experimental data exhibited a sound power level according to the
sixth power of the flow speed, suggesting a dipole-like behaviour.

A number of theoretical studies examined the sound generated by low-Mach-
number flows over a step (e.g. Conlisk & Veley 1985; Dhanak & Gundlapalli 1992;
Howe 1989, 1997, 1998). Conlisk & Veley (1985) and Dhanak & Gundlapalli (1992)
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considered the motion of line vortices in an inviscid flow over a forward facing
step and examined its effect on radiated sound. Howe (1989, 1998) analysed the
sound from a forward step produced by the diffraction of a frozen boundary-layer
pressure field. These studies employed inviscid approximations, therefore ignoring the
flow separation at the step which inevitably generates additional vortices that may
contribute to the sound. Howe (1997) modelled the flow separation at forward and
backward steps and found that the effect of separation became smaller as the step
height decreased with respect to the boundary layer thickness. In a realistic step flow,
noise is generated by not only diffraction of hydrodynamic pressure, but also the
distortion of incoming turbulent eddies and generation of new turbulence structures
by the steps. The latter are sources of self noise, and a full account of them requires
a viscous flow computation.

There are no computational studies, to the authors’ knowledge, of wall pressure
fluctuations in flow over steps although studies of other separated flows exist (see
e.g. Na & Moin 1998; Kim & Sung 2006). On the other hand, a few computational
studies have been conducted recently to investigate the flow-induced noise from steps.
Addad et al. (2003) performed large-eddy simulation (LES), with a commercial
computational fluid dynamics code, of the flow over a large-aspect-ratio block
considered experimentally by Leclercq et al. (2001), and examined the acoustic source
terms for linearized Euler equations. Consistent with the findings of Leclercq et al.
(2001), their results showed that the backward step was a significantly weaker source
of noise than the forward step although it should be pointed out that the flow over
the backward step was largely influenced by the upstream forward step. Becker et al.
(2005) utilized LES for the flow field while applying finite element method to solve
for the acoustic field the inhomogeneous wave equation from Lighthill’s acoustic
analogy (Lighthill 1952). Their contour plot of the instantaneous acoustic pressure
field around the step showed a predominantly dipole directivity pattern. Ali et al.
(2007) performed LES for a forward facing step and computed the sound field using
linearized Euler equations.

The aforementioned approaches based on numerical solutions of linearized Euler
equations and the Lighthill equation allow flexible treatment of solid boundaries
and, in the case of linearized Euler equations, incorporation of the effect of flow on
wave propagation. However, they are prone to numerical errors, particularly for low-
Mach-number flows, because the true source characteristics (e.g. dipole, quadrupole)
are not represented in the original equations. The importance of representing the
correct source characters in a numerical evaluation was stressed by Crighton (1975)
and more recently by Wang, Freund & Lele (2006). Furthermore, it is difficult to
assess the relative importance of different source locations in such numerical solutions
because the enhanced radiation efficiency by surface scattering is not known explicitly.
For better numerical accuracy and physical insight, it is generally preferable (when
feasible) to employ an integral solution to the Lighthill equation with an appropriate
Green’s function, obtained analytically or numerically. This is the approach taken
here.

In the present work, LES is employed to study the aeroacoustics of low-Mach-
number boundary-layer flows over backward and forward facing steps. The focus is
on steps that are small relative to the boundary layer thickness. Acoustic calculations
are carried out using Lighthill’s analogy (Lighthill 1952) with a Green’s function
tailored to the step geometry for acoustically compact step height (Howe 1989, 2003).
This approach offers the advantage that the source characteristics are represented
correctly by analytical means, thus fostering numerical accuracy. It also facilitates
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easy identification of important source regions with account for the effect of Green’s
function. The use of realistic turbulent source terms generated by LES with the
hard-wall Green’s function allows inclusion in the calculation of all potential source
processes, including the diffraction and distortion of incoming turbulence, unsteady
separation and reattachment of shear layers and vortex shedding.

Baseline simulations, with step height equal to 53 % of the boundary layer thickness
and Reynolds number of 21 000 based on step height, are first carried out and the
results are compared with experimental data of Farabee and colleagues (Farabee &
Casarella 1984, 1986; Farabee & Zoccola 1998). The objectives are to validate the
LES results in terms of basic flow statistics and frequency spectra of wall pressure
fluctuations, and to better understand the noise production mechanisms and important
source regions. The results are used to explain the disparity in noise levels noted by
Farabee & Zoccola (1998) between the backward and forward steps in terms of source
and Green’s function distributions. The forward step produces stronger sound because
of stronger sources near the step upper corner, which is weighted most heavily by the
Green’s function.

A further objective of the study is to examine the effect of step height on sound
generation. Most previous studies mentioned above dealt with steps whose size was
comparable to or larger than the incoming turbulent boundary layer thickness.
However, surface discontinuities such as gaps and panel mismatches found on marine
and air vehicles are of a much smaller size – typically a few per cent of the boundary
layer thickness. Despite the small size, they can significantly affect the flow noise
through diffraction and turbulence modification. To elucidate the effect of step size
on sound generation and source mechanisms, three additional step heights, which
are 13 %, 3.3 % and 0.83 % of the boundary layer thickness, are considered for both
backward and forward steps. The extent to which diffraction and source modifications
by the step impact sound generation is examined through source field analysis along
with the Green’s function. It is found that step height affects the backward-step sound
level mainly through diffraction (Green’s function), whereas it affects the forward-
step sound through a combination of diffraction and source modification. As the step
height decreases, the difference in sound level between backward and forward steps
is reduced as source modification becomes less significant.

2. Computational methodology
Eight simulations, which comprise backward and forward facing steps of four

different heights, were carried out. In this section and §§ 3 and 4, the baseline
simulations corresponding to the largest steps are described. Smaller step simulations
are performed with the same method and requirement for spatial and temporal
resolutions, and are discussed in § 5.

The parameters used in the baseline simulations were chosen to closely match the
experimental conditions of Farabee and colleagues (Farabee & Casarella 1984, 1986;
Farabee & Zoccola 1998). Experimental measurements were taken in the open-jet
test section of an anechoic wind tunnel and the Reynolds number Reh, based on
the step height h and free-stream velocity U0, ranged from 21 000 to 37 000. The
boundary layer thickness upstream of flow separation varied from 1.0h to 2.4h and
the Mach number was in the range 0.075–0.12. The Reynolds number Reh is selected
to be 21 000 in the simulation based on the amount of available data for comparisons
and simulation affordability. The unperturbed (i.e. without the step) boundary layer
thickness δ at the step location is 1.88h, or the step height is 53 % of the boundary



Sound generation by turbulent boundary-layer flow over small steps 165

–10 –5 0 5 10
0

2

4

x/h

y/
h

Figure 1. A portion of computational domain and mesh (every third line shown in each
direction) at a given spanwise plane for the largest forward step.

layer thickness. The Reynolds number based on the unperturbed momentum thickness
at the step is Reθ = 4755. In dimensional units, h = 1.27 cm and U0 � 25 m s−1.

2.1. Computational domain and grid

Figure 1 shows a close-up of the computational domain around the baseline forward
facing step at a spanwise plane. The computational domain size is Lx = 40h, Ly = 30h

and Lz = 4h in the streamwise (x), wall-normal (y) and spanwise (z) directions,
respectively. The streamwise domain length is equally divided between upstream and
downstream regions of the step (each with 20h) and the coordinate system origin
coincides with the lower corner of the step in the mid-span plane. Previous numerical
studies of turbulent flow over a backward facing step (Akselvoll & Moin 1995; Le
et al. 1997) employed a similar domain size: 10h, 20h and 4h in the step upstream,
downstream and spanwise directions, respectively; domain height was limited to 6h

since they were closed channel simulations. As will be discussed in § 3, the current
computational domain size is considered adequate for the objective of studying wall
pressure fluctuations and flow-induced noise.

The grid used in the simulations is non-uniform in the streamwise and wall-normal
directions, and uniform in the spanwise direction (figure 1). The number of grid
points is 897 × 261 × 129 (Nx × Ny × Nz), and the maximum grid stretching ratio is
1.01 and 1.09 in the streamwise and wall-normal directions, respectively. When scaled
by the wall quantities at the inlet, the streamwise grid spacing �x+ is mostly between
8 and 44, with its minimum occurring at the step face. In order to reduce the
number of points, the grid far downstream of the step is further stretched from
�x+ = 44 at x/h= 10 to 79 at x/h= 20. In the wall-normal direction, �y+ ranges
from 1.7 at the step upper and lower surfaces to 44 at y/h � 3, the approximate
edge of the boundary layer above the step. The spanwise grid spacing �z+ is 25.
These grid spacings are comparable to those used in the LES of Akselvoll & Moin
(1995) for a backward facing step, whose results compared well with those from the
direct numerical simulation (DNS) of Le et al. (1997). Note that, since a staggered
grid is used, the first off-wall nodes for the velocity components parallel to walls
are defined at half the grid spacing mentioned above (i.e. �x+ = 4 and �y+ = 0.85).
This computational grid was found to be adequate for accurately predicting the flow
and acoustic quantities of interest. A comparison of simulation results with those
obtained on a coarse mesh, which is a factor of two coarser in each direction, showed
good agreement. The acoustic spectra differed by no more than 1.3 dB in the low to
intermediate frequency range not affected by the grid cutoff.
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Figure 2. Mean streamwise velocity profile in wall units for the inflow turbulent boundary
layer. , LES at Reθ = 4100; �, Farabee & Casarella (1984) at Reθ = 2541; , U+ = y+;

, U+ = (1/0.41) ln y+ + 5.0.

2.2. Numerical method and boundary conditions

The numerical algorithm used in this study is described in detail by You et al. (2004).
The spatially filtered unsteady incompressible Navier–Stokes equations are solved in
conjunction with the dynamic Smagorinsky model of Germano et al. (1991) with
Lilly’s modification (Lilly 1992). The governing equations are spatially discretized
with a second-order central-difference scheme on a staggered grid. The solution is
advanced in time using a fractional step method with a semi-implicit approach:
viscous terms are treated implicitly with the second-order Crank–Nicolson scheme
and convective terms are treated explicitly with a third-order Runge–Kutta scheme. A
constant Courant–Friedrichs–Lewy number of 1.0 is employed, resulting in an average
�t of 4.50 × 10−3 h/U0 and 1.71 × 10−3 h/U0 for the backward and forward facing
steps, respectively. The pressure Poisson equation is solved with a multigrid iterative
method combined with a Fourier collocation method in the spanwise direction. The
numerical code is non-dissipative and energy conservative. It has been successfully
used in the past to compute trailing-edge aeroacoustics (Wang & Moin 2000; Wang
et al. 2009) and tip-clearance flow (You et al. 2007), among others. The current
simulation employs a Cartesian grid approach with the immersed boundary method
of Fadlun et al. (2000) to enforce the no-slip boundary condition on the step surfaces.

Adopting the method of Lund, Wu & Squires (1998), a separate LES of a flat-
plate turbulent boundary layer at Reθ = 4100 was carried out to generate realistic
turbulent inflow data as inlet boundary conditions for the main simulations. Shown
in figure 2 is the mean streamwise velocity profile in wall units at the inlet of the
computational domains. A no-slip boundary condition was imposed at the wall, and
the periodic boundary condition was used in the spanwise direction. At the top of the
domain, a Dirichlet boundary condition (u, v, w) = (U0, 0, 0) was employed. With the
wall-normal computational domain size of Ly =30h, the expansion and contraction
ratios are 1.034 and 0.967 for the backward and forward steps, respectively. The
mean streamwise velocity near the top boundary was within 1 % and 3 % of the inlet
free-stream velocity for the backward and forward steps, respectively. At the exit, a
convective outflow boundary condition was used.
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Figure 3. Velocity fields for the backward facing step. (a) Instantaneous streamwise velocity
u/U0, 14 contour levels from −0.25 to 0.95. Dotted lines denote negative values. (b) Turbulent

kinetic energy (u′2+v′2+w′2)/(2U 2
0 ), 14 contour levels from 0.002 to 0.03. (c) Mean streamlines.

3. Flow simulation results
3.1. Flow field

The velocity fields for the backward facing step are shown in figure 3 for −10 �
x/h � 10. The contours of instantaneous streamwise velocity, u/U0, at a spanwise
location (figure 3a) show that the turbulent boundary layer separates at the corner of
the step, forms a free shear layer and reattaches at about 5 step heights downstream
of the step. Underneath the shear layer, u/U0 is largely negative (dotted lines)
and small in magnitude. Figure 3(b) shows contours of turbulent kinetic energy,
(u′2 +v′2 +w′2)/(2U 2

0 ), and illustrates the extent of unsteadiness in different regions of
the flow. Maximum turbulent kinetic energy level of 0.03 is seen in the region around
(x/h, y/h) = (4.0, 0.6), along the rear part of the shear layer. The mean streamlines
obtained by temporal and spanwise spatial averaging (figure 3c) indicate that two
separation bubbles are formed. The primary bubble extends from the step face to
approximately 5.7 step heights downstream, and the smaller secondary bubble extends
to 1.07 step heights downstream.

Figure 4(a–c) displays the instantaneous streamwise velocity contours, turbulent
kinetic energy contours and the mean streamlines, respectively, for the case of
forward facing step. The turbulent boundary layer is deflected upward as the step is
approached, detaches at the step corner to form a shear layer above the step, and
reattaches to the wall soon afterwards. Regions of negative u/U0 occur in front of
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Figure 4. Velocity fields for the forward facing step. (a) Instantaneous streamwise velocity
u/U0, 14 contour levels from −0.45 to 1.15. Dotted lines denote negative values. (b) Turbulent

kinetic energy (u′2 +v′2 +w′2)/(2U 2
0 ), 14 contour levels from 0.002 to 0.1. (c) Mean streamlines.

the step and below the shear layer. In figure 4(b), maximum turbulent kinetic energy
level of 0.1 is seen along the front part of the free shear layer in the region near
(x/h, y/h) = (0.2, 1.15). Mean streamlines show two recirculation bubbles (figure 4c).
The small separation bubble in front of the step has a size of 0.58h and 0.46h in the
x and y directions and the larger one above the step extends to approximately 3 step
heights downstream.

Although flows over backward and forward facing steps share some common
features, such as separation and reattachment of boundary layer and formation of
shear layer and recirculation bubbles, their characteristics are very different, which is
of significance for wall pressure fluctuations and flow-induced noise. Firstly, the extent
of flow unsteadiness differs, as indicated by turbulent kinetic energy magnitudes. The
maximum turbulent kinetic energy for the forward step is more than three times that
for the backward step. Velocity field acts as a source for the pressure Poisson equation
and Lighthill’s equation, and as will be seen later, the wall pressure fluctuations and
sound radiation are greater for the forward facing step case. Secondly, the location
where maximum velocity fluctuations occur is closer to the top step corner for the
forward step than for the backward step. This is due to the smaller size and location of
the primary recirculation bubble and the strong upward momentum near the corner
of the forward facing step. In § 4, its consequences on radiated sound will be examined.

The wall skin-friction coefficient Cf = τw/(ρU 2
0 /2) is shown in figure 5 for both

steps. The location of zero Cf (or wall-shear stress τw) is used to determine the
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Figure 5. Skin-friction coefficient for (a) backward facing step; (b) forward facing step.

mean reattachment length xr . The separated flow over the backward step reattaches
at 5.68 step heights downstream of the step, 5 % smaller than xr/h � 6 as noted by
Farabee & Casarella (1984, 1986). This is considered satisfactory given experimental
uncertainties. Badri Narayanan, Khadgi & Viswanath (1974) observed xr/h � 5.6 in
a closed channel with an expansion ratio of 1.008. For the forward facing step,
the current simulation predicts xr/h= 2.93 while Farabee & Casarella (1984, 1986)
observed xr/h � 3; again the LES prediction is reasonable. Minimum Cf values of
−0.0015 and −0.0027 occur at x/h= 3.47 for the backward step and at x/h = 1.18
for the forward step, respectively. This indicates the backflow in the recirculation
zone of the forward facing step is stronger. The Cf distribution shows that the grid
spacing in wall units based on the inlet condition is a conservative estimate, as Cf

(hence, uτ/U0 =
√

Cf /2) at the inlet is the largest except at a few points near the
singular step corner.

Distribution of mean wall pressure coefficient Cp is shown in figure 6. Solid lines are
from the current LES, and symbols are from the experiment of Farabee & Casarella
(1984, 1986). To examine the effect of computational domain size, the results from
a smaller-domain (20h × 20h × 4h) simulations are plotted as dashed lines. For the
backward facing step (figure 6a), the largest discrepancy between the LES and the
experiment is seen for x/h < 0. This is likely due to a limited computational domain
size upstream of the step; experimental data show a steep gradient of Cp at x/h =−20
while computational results display flatter curves. The large difference between the
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Figure 6. Pressure coefficient distribution for (a) backward facing step; (b) forward facing
step. , LES with larger domain; , LES with smaller domain; �, Farabee & Casarella
(1984).

two simulations in this region corroborates this explanation. Despite the differences in
the upstream values of Cp , the two simulations agrees well for x/h � 0 except for the
region close to the exit boundary of the small domain, where the solution is degraded
by the approximate boundary condition. The Cp curves immediately downstream
of the step show a qualitatively different behaviour compared to experiment. LES
predicts a fall-off region 0 � x/h � 2.5, whereas the experiment shows no such
region; the computational results, which show a maximum suction pressure inside
the recirculation bubble (x/h= 2.5), are physically more realistic and also observed
in other experiments (see e.g. Moss & Baker 1980). For the forward facing step
(figure 6b), the upstream discrepancy is not as pronounced, but the need for a
larger computational domain is still acknowledged. Downstream of the step, the
computations predict a fall-off region 0 � x/h � 0.65 with maximum suction pressure
inside the recirculation bubble (x/h= 0.65), but the experiment fails to measure it.
Similar fall-off region was also observed by Moss & Baker (1980). The two simulation
results compare well for x/h � 0 except for the magnitude of the minimum Cp . The
slope of pressure recovery downstream of the step differs between the computation
and the experiment. This is puzzling given that the prediction of bubble size is in
good agreement with the experimental value.
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Figure 7. Root mean square of wall pressure fluctuations for (a) backward facing step;
(b) forward facing step. , LES; �, Farabee & Casarella (1984).

Although the current computational domain size is not ideal, the largest discrepancy
in Cp distributions is found in the upstream of the step, and we are mostly interested
in modification of the flow field by the step (i.e. x/h � 0). As it will be seen in
§ 3.2, the r.m.s. of wall pressure fluctuations agree well with experiments (even in the
upstream of the steps), indicating insensitivity to the mean Cp . Given the already
large grid size in the simulations, and the uncertainty in the experimental Cp data,
the current domain size is considered acceptable for the purpose of examining wall
pressure fluctuations and flow-induced noise.

3.2. Wall pressure fluctuations

Figure 7 shows the streamwise distribution of the r.m.s. of wall pressure fluctuations
normalized by the free-stream dynamic pressure (ρU 2

0 /2). Solid lines represent the
results from the LES and symbols from the experiment (Farabee & Casarella
1984). For the backward facing step (figure 7a), the peak r.m.s. pressure of 0.035
occurs at x/h= 4.84, slightly ahead of the reattachment location (xr/h= 5.68), which
agrees with the experimental data of Farabee & Casarella (1984) and others (Lee &
Sung 2001 and the references therein). The simulations slightly overpredict the r.m.s.
pressure near and downstream of its peak, but the overall agreement with experimental
values is good.



172 M. Ji and M. Wang

50

70

90

110

130

102 103 104

102 103 104

102 103 104
50

70

90

110

130

(a)

(c)

(b)

(d)

50

70

90

110

130

50

70

90

110

130

f  (Hz)
102 103 104

f  (Hz)

Φ
pp

(f
) 

(d
B

 r
ef

. µ
P

a2 
H

z–1
)

Φ
pp

(f
) 

(d
B

 r
ef

. µ
P

a2 
H

z–1
)

Figure 8. Frequency spectra of wall pressure fluctuations for the backward facing step at four
streamwise locations: (a) x/h = − 16; (b) x/h =1; (c) x/h = 6; (d ) x/h = 10. , LES;

, Farabee & Casarella (1986).

The r.m.s. pressure fluctuations for the forward facing step (figure 7b) generally
agree well between the LES and experiments (Farabee & Casarella 1984). It is
interesting to observe that the r.m.s. pressure upstream of the step is predicted well
by LES even though the adverse mean pressure gradient deviates from experimental
data. The location (x/h= 1.69) and magnitude (= 0.092) of the peak r.m.s. pressure
agree fairly well with experiments.

Frequency spectra of wall pressure fluctuations are shown in figures 8 and 9
for the backward and forward facing steps at four and six different streamwise
locations, respectively. In order to facilitate a comparison with experimental data, the
spectra were converted to dimensional quantities using the parameters used in the
experiments. Overall, a good agreement with experimental measurements is obtained
for both steps at all locations. Changes in spectral level and shape as a function of
streamwise location are well captured by LES over a wide range of frequencies. The
computation predicts an early fall-off at higher frequencies, which is a characteristic
of LES due to limited grid resolution. It is worth pointing out that the wall pressure
fluctuations and radiated sound pressure are generated by the same turbulent source
field. In fact, the dominant source terms in the Lighthill equation (see § 4.1) are the
same as source terms in the Poisson equation for hydrodynamic pressure. Therefore,
the accurate prediction of the wall pressure spectra is indicative of the quality of the
acoustic source data generated by LES.
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Figure 9. Frequency spectra of wall pressure fluctuations for the forward facing step at six
streamwise locations: (a) x/h =−6; (b) x/h =−1; (c) x/h =0, y/h =0; (d ) x/h = 0, y/h =1;
(e) x/h = 2; (f ) x/h = 4. , LES; , Farabee & Casarella (1986).

The spectral features in figures 8 and 9 are related to the flow regimes in the
following way. At the farthest upstream location shown for the backward facing step
(figure 8a), the spectrum is essentially that of a flat-plate turbulent boundary layer.
A short distance downstream of the backward facing step (figure 8b), the spectrum
shows elevated low-frequency content but little high-frequency energy, suggesting that
the pressure fluctuations are dominated by the recirculating flow inside the separation
bubble. The pressure level is highest near the reattachment point (figure 8c) and, at
low frequencies, is more than 20 dB above that for a flat-plate boundary layer; this is
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caused by the shear layer impinging on the wall (Farabee & Casarella 1986; Camussi
et al. 2006). Past the reattachment location (figure 8d ), the spectral level is seen to
decrease as the reattached boundary layer starts to relax towards the equilibrium
turbulent boundary layer.

Similar accounts can be made of the frequency spectra for the forward step. At 6
step heights upstream of the step (figure 9a), the spectrum is similar to that of an
equilibrium boundary layer. As the step is approached, the adverse mean pressure
gradient increases and its effect on the pressure fluctuations is noticeable starting at
x/h � − 3 (figure 7b). The increase in pressure level upstream of the step is depicted
in figure 9(b). The pressure fluctuations see a sudden rise from the base to the top of
the step (figure 7b and figure 9c,d ) before further increasing to reach the maximum
near the reattachment point (figure 9e). After the flow reattaches, the spectral level is
reduced (figure 9f ).

Earlier experimental studies on separated and reattaching flows (e.g. Kiya & Sasaki
1983; Cherry, Hillier & Latour 1984) identified frequencies associated with shear
layer flapping and vortex shedding. The former was observed in the frequency spectra
of wall pressure very near the separation point, x/xr � 0.2 (xr is the reattachment
length), and was approximately f xr/U0 � 0.15. The latter was detected further away
from the separation point, 0.55 � x/xr � 1.5, and the wall pressure spectra exhibited
a peak near f xr/U0 � 0.6. When they are converted to a dimensional quantity
using the parameters in the present study, the approximate flapping and shedding
frequencies are, respectively, 41 and 207Hz for the backward step, and 79 and 394Hz
for the forward step. Although our data are not sufficient to include the flapping
frequencies, the spectra at the vortex-shedding frequencies are computed accurately.
Both numerical and experimental curves in figure 8(c) and figure 8(d ) (x/h = 6 and
10) display a peak at approximately 200 Hz, which can be attributed to the vortex
shedding (also compare with figure 23 of Cherry et al. 1984 and figure 5 of Lee &
Sung 2001). Similarly for the forward step, figure 9(e) and figure 9(f ) (x/h = 2 and
4) display a broadband shedding peak at approximately 400 Hz.

4. Flow-induced sound
4.1. Formulation

The far-field sound from the backward and forward steps is calculated in the
framework of Lighthill’s aeroacoustic theory (Lighthill 1952). The fluctuating pressure
p(x, t) due to flow-generated acoustic waves is governed by(

1

c2
0

∂2

∂t2
− ∇2

)
p =

∂2Tij

∂xi∂xj

, (4.1)

where Tij = ρuiuj +pij − δij c
2
0ρ is the Lighthill stress tensor and c0 is the ambient

speed of sound. A general solution to the above equation in the frequency domain is
given by Goldstein (1976):

p̂(x, ω) =

∫
V

T̂ij ( y, ω)
∂2G

∂yi∂yj

(x, ω; y) d3 y +

∫
S

nj p̂ij ( y, ω)
∂G

∂yi

(x, ω; y) d2 y, (4.2)

where ˆ( ) represents the Fourier transform of a function, pij = pδij − τij is the
stress tensor including pressure and viscous stress contributions, x and y denote
the observation and source locations, respectively, and nj is the solid surface unit
normal into the fluid. For low-Mach-number flows without strong temperature
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inhomogeneities, the Lighthill stress tensor can be approximated by Tij � ρ0uiuj ,
where ρ0 is the ambient density. G(x, ω; y) in (4.2) is the three-dimensional Green’s
function in frequency space and satisfies the Helmholtz equation

(∇2 + k2)G(x, ω; y) = −δ(x − y), (4.3)

where k = ω/c0 is the acoustic wavenumber.
The use of incompressible flow simulations such as the present LES to compute

acoustic source terms can be adequate for low-Mach-number flows and advantageous
over more expensive compressible flow simulations (Wang et al. 2006). However, it
generally requires a Green’s function specific to a given geometry to enforce the
appropriate wall boundary condition for the wave field, and finding such Green’s
function analytically is generally not possible except for simple geometries. For the
present problem, an approximate Green’s function can be obtained for step height
that is much smaller than the acoustic wavelength, which is the case for a wide range
of frequencies in the low-Mach-number turbulence. Howe (1989, 2003) shows that the
compact Green’s function for the step geometry can be written as (here, shown in the
frequency space)

G(x, ω; y) =
1

4π

(
eik|x−Y |

|x − Y | +
eik|x−Y ′ |

|x − Y ′|

)
, (4.4)

where

Y1 = Y ′
1 = Y1(y1, y2),

Y2 = −Y ′
2 = y2,

Y3 = Y ′
3 = y3.

The quantity Y1 satisfies the Laplace equation with ∂Y1/∂n= 0 on the surface including
the step face, approaches y1 at large distances from the wall, and is thus analogous to
the velocity potential for an ideal fluid flow over the step. It is obtained by application
of Schwarz–Christoffel transformation (Howe 1989, 2003; see Appendix).

The use of an analytical Green’s function like this can foster numerical accuracy
because the correct acoustic source characteristics are captured analytically. It also
allows easy identification of important source regions by examining the values of the
Green’s function derivatives as appearing in (4.2) in relation to source distribution. A
similar approach has been employed previously to predict trailing-edge noise (Wang &
Moin 2000; Wang et al. 2009).

When G(x, ω; y) from (4.4) is substituted into (4.2), the surface integral can be
neglected since ∂G/∂n = 0 on the surface and the viscous shear stress terms are
negligible for high-Reynolds-number flows. In order to evaluate the volume integral,
we differentiate G twice with respect to yi and retain only the leading-order terms in
1/r (see Appendix) to obtain in the acoustic far field

∂2G

∂yi∂yj

= − ikr1

4π

(
eikr

r2
+

eikr ′

r ′2

)
∂2Y1

∂yi∂yj

, (4.5)

where

r = |x − Y |,
r ′ = |x − Y ′|.

The r1/r2 factor in (4.5) is readily identified with a dipole aligned in the streamwise
direction as expected for an acoustically compact step; this result is consistent with
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the conclusions of earlier studies (Howe 1989, 1998). Y1 depends on y1 and y2 only,
and therefore ∂2G/∂yi∂yj = 0 for i or j = 3.

When ∂2G/∂yi∂yj is substituted into the volume integral and rearranged (see
Appendix), we obtain

p̂(x, ω) = − ik

2π

eik|x| cos θ

|x| D̂(ω), (4.6)

where cos θ = r1/r , and

D(t) =

∫ ∫
∂2Y1

∂yi∂yj

Qij (y1, y2, t)dy2dy1 (4.7)

with

Qij (y1, y2, t) =

∫
Tij ( y, t)dy3. (4.8)

Qij (y1, y2, t) is the Lighthill stress tensor Tij ( y, t) integrated over the span of the
computational domain. It is assumed that the spanwise coherence length of acoustic
source field is smaller than the spanwise computational domain size, which is
acoustically compact. The latter is not a significant restriction because, in the mid-
plane perpendicular to the step where experimental measurements are often made,
the spanwise extent of the source region is always acoustically compact if the observer
is sufficiently far from the step. Multiplying p̂ with its complex conjugate, the sound
pressure spectra is expressed as

Φpa(ω) =
k2 cos2 θ

4π2|x|2 ΦD(ω), (4.9)

where ΦD(ω) is the spectral density of D(t).

4.2. Sound spectra

When computing the acoustic pressure, it is important to ensure that the volume
integral is not affected by the truncation of source terms at the integration boundaries
(Wang, Lele & Moin 1996; Wang et al. 2006). For the current problem where the
turbulent boundary layer extends towards the inlet and exit, we check the magnitude
of ∂2Y1/∂yi∂yj since it multiplies the source term (see D(t) in (4.7)). Figure 10 shows
the magnitude of ∂2Y1/∂yi∂yj in logarithmic scale for the forward step case (mirror
images about the x = 0 plane are obtained for the backward step). The ∂2Y1/∂y

2
2

component is not shown in figure 10 since it is identical to ∂2Y1/∂y
2
1 but with an

opposite sign, given that Y1 satisfies the Laplace equation. It is seen that the magnitude
peaks at the upper corner of the step and decreases rapidly away from the step by
many orders of magnitude. This ensures that the important source region is localized.
The volume integral (4.7) is found to converge within the region −12 � x/h � 12 for
the backward step and −3 � x/h � 3 for the forward step.

Figure 11 shows the dimensionless sound pressure spectra as a function of frequency
from forward and backward facing steps (P0 is the ambient pressure and γ = cp/cv

is the specific heat ratio). The sound spectral level for the flow over the forward step
is higher than that for the backward step by nearly two decades at low frequencies,
although the difference decreases at higher frequencies. Note that all quantities used
in the normalization are common to both steps, and therefore the observed difference
is not due to non-dimensionalization. The result in figure 11 is qualitatively consistent
with the experimental observation of Farabee & Zoccola (1998), who measured the
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2
1 |h;
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forward-step noise to be about 5 dB higher than the background level, but failed
to measure any noise from the backward step due to poor signal-to-noise ratio.
A direct comparison with the experiment cannot be made because experimental
measurements were taken directly above the step, where the dominant dipole sound
is not present according to (4.6), while in the computation the weaker quadrupole
sound has been ignored, leading to no sound above the step. Experimental data
were collected in the high-frequency range of 4–90 kHz. In comparison, for a free-
stream velocity of U0 = 25 m s−1, the frequency range in figure 11 is from 280 Hz
to 12 kHz, which corresponds to a wavelength-to-step-height ratio from 95 to 2.2.
The acoustic solution becomes less accurate at the high-frequency end because the
dipole approximation associated with the low-frequency Green’s function (compact
step height) is less valid. In the recent measurement by Jacob et al. (2001) of sound
generated by backward facing steps under a wall jet, the frequency ranged from 192Hz
to 25.6 kHz, corresponding to a wavelength-to-step-height ratio from 35 to 0.3. Their
sound pressure measurement showed a more dipole-like directivity for smaller step
heights and lower free-stream velocity (i.e. lower Mach number), which make the
step more compact acoustically. In the theoretical study of the interaction between a
discrete line vortex and steps including the effect of separation, Howe (1997) compared
the noise from forward and backward steps. Consistent with the above findings, his
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analyses demonstrated that the forward step was a more efficient source of sound.
Note that the present dipole formulation does not account for the effect of acoustic
convection and refraction by the flow, which can modify the directivity if the Mach
number is not small.

In the above calculation, only the source field within the LES domain of spanwise
size Lz is considered. In a real configuration with spanwise size L > Lz, the total
sound spectrum comprises of contributions from L/Lz independent source regions,
provided that Lz is no less than the spanwise coherence length of the source field.
Therefore, Φtotal

pa � (L/Lz)Φpa . The coherence length of acoustic source field can be
estimated by that of fluctuating wall pressure since the same turbulent flow field is
responsible for both. The coherence function is defined as

γ 2(�x, ω; x) =
|Φpp(�x, ω; x)|2

Φpp(0, ω; x)Φpp(0, ω; x + �x)
, (4.10)

where

Φpp(�x, ω; x) =
1

2π

∫ ∞

−∞
Rpp(�x, �t; x)eiω�t d(�t) (4.11)

is the cross spectrum function and Rpp(�x, �t; x) = 〈p(x, t)p(x + �x, t + �t)〉 is the
space–time correlation of wall pressure fluctuations. As an example, figure 12 shows
the spanwise coherence γ 2(�z, ω; x) for the backward and forward facing steps at
0.2h away from the step corner on the upper surface. This location is representative
of important source regions as shown in figure 10. The coherence decreases rapidly
with spanwise separation for all frequencies, ensuring that the acoustic source field
is well decorrelated within the computational domain and that Qij obtained through
the integration in (4.8) is representative of an independent source. Downstream of the
reatttachment points, low-frequency source structures can be larger than the spanwise
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(c) 2.00 × 10−2; (d ) 7.15 × 10−2; (e) 3.68 × 10−4; (f ) 3.19 × 10−2.

domain size, but they are acoustically less important since they are farther away from
the step corner.

4.3. Source field

The difference in the noise levels produced by flow over the two steps can be
better understood by examining the acoustic source field together with the spatial
distribution of the Green’s function derivatives (figure 10). Figures 13 and 14 show
contours of the power spectral density of spanwise integrated Lighthill stresses,
ΦQij

U0/(ρ0U
2
0 h)2h at dimensionless frequencies f h/U0 � 0.30 and 2.0 (equivalent to

591 Hz and 3.94 kHz, or acoustic wavelengths of 45h and 7h, for the flow conditions
of Farabee & Zoccola 1998), respectively. At both frequencies, flow over the forward
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step yields acoustic sources of greater magnitude than that over the backward step.
As important as the source strength is the spatial distribution of source terms, which
differs significantly between the two steps. Regions of intense acoustic source terms are
located closer to the upper corner of the step, where the Green’s function derivatives
are large, in the forward step case than in the backward step case. Similar observations
are made at higher frequencies as well.

Figure 15 shows the power spectral density of the Green’s function weighted
Lighthill stresses

R11(y1, y2, t) =
∂2Y1

∂y2
1

Q11,

R12(y1, y2, t) =
∂2Y1

∂y1y2

Q12 +
∂2Y1

∂y2∂y1

Q21,

R22(y1, y2, t) =
∂2Y1

∂y2
2

Q22

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.12)

in logarithmic scale for a six-decade drop in magnitude starting from a maximum.
The selected frequency is f h/U0 � 0.30 (same as in figure 13), but similar contour
distributions are obtained for f h/U0 � 2.0. In contrast to the raw source distribution
in figures 13 and 14, the Green’s function weighted source regions are heavily
concentrated around the step upper corner for both steps. The contour shape for each
component of Rij bears resemblance to that of the corresponding component of the
Green’s function derivatives ∂2Y1/∂yi∂yj . The peak magnitude of R11 is comparable
between backward and forward steps, whereas the maximum R22 value is drastically
different. This indicates that the strong vertical velocity component induced by
the forward facing step plays a large role in producing sound, while the vertical
velocity contribution is nearly negligible for the backward step. A comparison of the
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contour plot for the summation of all components, R (figure 15g,h) with figure 13
illustrates that the most energetic portion of the separated shear layer contributes
more significantly to sound production in the forward step case than in the backward
step case (note that the maximum turbulent kinetic energy for the forward step
occurs at x/h= 0.2, figure 4b, while that for the backward step occurs at x/h = 4.0,
figure 3b). For both steps, the reattachment regions are relatively unimportant for
sound generation because they are located far away from the step corner.

Jacob et al. (2001) found, using a source localization technique based on monopoles,
that the maximum source region for their backward step coincided with the location of
maximum turbulent kinetic energy in the separated shear layer. This is consistent with
the raw source distributions shown in figures 13 and 14, but is not representative of the
truly important sources in this flow. The results in figure 15 demonstrate the import-
ance of source identification with the appropriate Green’s function, which takes into
account the diffraction effect of solid boundaries and the increased radiation efficiency.

5. Effect of step height on sound generation
The step height considered so far is a significant portion (53 %) of the boundary

layer thickness. Surface discontinuities of much smaller sizes are often found in
practical applications, and it is of interest to investigate their effects on sound
generation. Six additional simulations consisting of backward and forward steps of
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Case h/δ h+ Reh

1 0.53 786 21 000
2 0.13 197 5250
3 0.033 49 1313
4 0.0083 12 328

Table 1. Different step heights and relevant flow parameters. Step heights are successively
reduced to 1/4 of the previous one, while the upstream boundary layer is identical. The
boundary-layer properties (δ and uτ ) are based on an unperturbed turbulent boundary layer
at the step location. For each step height, both backward and forward steps are considered.

three smaller heights were carried out. Table 1 summarizes the parameters for all
simulations including the baseline simulations. The additional step heights are 13 %,
3.3 % and 0.83 % of the boundary layer thickness, which remains the same for all
cases. In terms of the boundary layer inner scaling, these step heights correspond to
197, 49 and 12 wall units. The first two steps are located in the logarithmic region and
the smallest one is in the buffer region of turbulent boundary layer. Computational
methods for flow and acoustics are identical to those for the baseline simulations and
the same grid resolution is maintained for all cases. The computational domain size
for these simulations is the same as in the baseline case in the spanwise direction
but is reduced in the streamwise and wall-normal directions because of smaller step
heights. In terms of boundary layer thickness, the domain size is Lx = 10.6δ, Ly = 6.4δ

and Lz =2.1δ. For ease of reference in the rest of the paper, the simulations are
labelled as follows: B01, B04, B16, B64, F01, F04, F16, F64, where ‘B’ and ‘F’ stand
for backward and forward steps, respectively, and the largest step corresponds to ‘01’
and the smallest to ‘64’ (1/64 of the largest step).

Figure 16 shows the instantaneous streamwise velocity field near the step for all
steps. The coordinates are normalized by the step height h, so that as h decreases the
plots capture a smaller fraction of the boundary layer and the flow structures appear
larger. As the step size decreases from 53 % to 0.83 % of the boundary layer thickness,
the flow is less perturbed by the step, and there are fewer flow structures generated by
the step. For the largest step height (figure 16a,b), backward and forward facing steps
have very different flows near the step as evidenced by the location and extent of
separated shear layer and recirculation bubble. In contrast, flows around the smallest
steps (figure 16g,h) look similar, implying the incoming flow is very little altered by
the steps. The extent of flow structures generated by the steps is further illustrated
in figure 17, which depicts the mean streamlines. As the backward step height is
reduced, the primary separation bubble becomes more elongated in the streamwise
direction relative to the step height, and the secondary recirculation region at the
lower step corner disappears. For the forward steps, decreases in the step size lead
to disappearance of the recirculation bubble above the step upper surface and much
weakened separated shear layer (figure 17f,h). The recirculation zone at the lower
step corner increases in size relative to the step height.

Dimensionless frequency spectra of the sound pressure produced by steps of 4
different heights are shown in figure 18 for backward and forward steps. Unlike those
in figure 11, the boundary layer thickness δ, instead of h, is used as a length scale
for non-dimensionalization. It is common to all steps, and therefore relative sound
levels between different steps will remain the same when converted to dimensional
quantities. Figure 18 shows that, for a given step height, forward step is louder than
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Figure 16. Instantaneous streamwise velocity u/U0. Ten contour levels are plotted for (a) B01
from −0.224 to 0.930; (b) F01 from −0.503 to 1.150; (c) B04 from −0.0688 to 0.935; (d ) F04
from −0.237 to 0.944; (e) B16 from −0.0407 to 0.941; (f ) F16 from −0.0358 to 0.949;
(g) B64 from 0.0615 to 0.940; (h) F64 from 0.0963 to 0.972. Dotted lines denote negative
values.

backward step, but the difference is significantly reduced as the step height decreases.
The peak value for the smallest forward step (F64) is only 1.5 dB larger than that
for the smallest backward step (B64), compared to a difference of 19 dB between
the largest forward and backward steps. For both backward and forward steps, the
frequency corresponding to the spectral peak shifts to lower values as the step height
increases.

To explain the above observations of sound pressure spectra for backward and
forward steps of different sizes, the acoustic source terms are examined in conjunction
with the Green’s functions for the steps. Figure 19 shows the spatial variation of the
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Figure 19. Spatial variation of the mean square of Green’s function weighted Lighthill stress

R2/(ρ0U
2
0 )2 in (4.12). Thirteen contour levels are plotted in logarithmic scale between maximum

and maximum ×10−6, where the maximum values are (a) B01, 9.68; (b) F01, 77.7; (c) B04,
4.16; (d ) F04, 6.04; (e) B16, 1.62; (f ) F16, 5.48; (g) B64, 0.445; (h) F64, 1.66.

mean square of the Green’s function weighted source R = R11 + R12 + R22 in (4.12)
for all steps. The contour levels are displayed in logarithmic scale from each step’s
respective maximum for a six-decade drop in magnitude. The contour shape for the
largest steps (figure 19a,b) is similar to that shown earlier for a single frequency
(figure 15g,h). As the step size decreases, the weighted source distribution becomes
more symmetric about the step vertical face and looks more similar between backward
and forward steps. This is because smaller steps cause less distortions to the near-wall
flow and the flow field is closer to that of an equilibrium turbulent boundary layer
(figure 16). Figure 19 also illustrates that the source regions become more compact as
the step size is reduced. This is due to the Green’s function, which is more compact
for smaller steps when normalized on a common length scale such as δ.

The preceding source analysis based on the frequency spectra and mean square
of Rij (y1, y2, t) reveals the spatial distribution of Green’s function weighted acoustic
source magnitude, but provides no information about cancellations that may occur
among different source regions. To gain more insight into source processes including
potential spatial cancellations, we note that, from (4.7),

D2(t) =

∫ ∫
D(t)

∂2Y1

∂yi∂yj

Qij (y1, y2, t) dy2dy1

=

∫ ∫ ∫ ∫
∂2Y1

∂yi∂yj

∂2Y1

∂y ′
i∂y

′
j

Qij (y1, y2, t)Qij (y
′
1, y

′
2, t) dy ′

2dy ′
1 dy2dy1,
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Figure 20. Spatial variation of S(y1, y2)/(ρ0U
2
0 δ)2 defined in (5.1). Sixteen contour levels

are plotted between: (a) B01, −2.16 × 10−4 and 8.10 × 10−5; (b) B04, −4.69 × 10−5 and
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(e) F01, −2.64 × 10−2 and 5.92 × 10−2; (f ) F04, −2.31 × 10−3 and 2.90 × 10−3; (g) F16,
−2.06 × 10−4 and 9.58 × 10−5; (h) F64, −1.26 × 10−5 and 3.79 × 10−6. Dotted lines denote
negative values.

where the overbar denotes time average. By letting

S(y1, y2) = D(t)
∂2Y1

∂yi∂yj

Qij (y1, y2, t), (5.1)

we obtain

D2(t) =

∫ ∫
S(y1, y2)dy2dy1 =

∫
ΦD(ω) dω,

and D2(t) is directly related to the sound power via (4.9). Therefore, S(y1, y2) can be
used to identify important regions that contribute to the radiated sound power, with
account for spatial cancellations.

Figure 20 shows the spatial variation of S(y1, y2) in the close vicinity of the step
upper corner. Coordinates are scaled by a common length scale δ, and hence, step
heights differ as indicated by the ordinate values. Note that the sign of S varies
throughout the domain, which leads to considerable cancellations of contributions
from different regions to the acoustic source power D2(t). The cancellations near the
step tip, where the Green’s function weighted sources are strongest, make weaker
source regions further away from the tip rise in importance, although the overall
effective source region is still quite small due to rapid decay of the Green’s function.
Relative magnitudes of the maximum contour levels are consistent with the sound
pressure spectra shown in figure 18; they are larger for forward steps and for larger
step heights. All backward steps and the smallest forward step (F64) display similar
contour shapes, implying that their dominant source processes are of similar nature.
Furthermore, the contour lines for backward steps are seen above the step upper
surface, where the flow is almost identical for all backward steps (i.e. prior to or
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B(F)01; , B(F)04; , B(F)16; , B(F)64.

just after separation). The structures arising from flow separation (shear layer and
separation bubble) play a lesser role in producing sound as discussed previously. In
contrast, the contour shapes for forward steps are more dependent on the step height.
For the two largest forward steps (F01 and F04), the important source regions are
oriented in the vertical direction (i.e. along the step vertical face), suggesting a strong
contribution of the vertical flow in front of the step.

Figure 21 shows the frequency spectra of spanwise integrated Lighthill stresses
Qij at locations that correspond to the maximum contour levels in figure 19. All
components of Lighthill stresses are shown for backward steps, while only the Q22

component is shown for forward steps for clarity. Q22 varies the most among forward
steps of different sizes, followed by Q12 and Q11. Each component of Lighthill stresses
is very similar for all backward facing steps (figure 21a). This is expected, as the spatial
location is very near the step upper corner. For the forward steps (figure 21b), the
flow condition near the step upper corner is strongly dependent on the height because
different step heights correspond to different regions inside the incoming boundary
layer, and more importantly because there is a large vertical velocity component
induced by the step which becomes stronger with an increasing step height.

Based on the above analyses of acoustic source mechanisms, the sound pressure
spectra in figure 18 can be explained as follows. For the backward facing step, the
difference in sound pressure level among steps of varying sizes is mainly caused by the
Green’s function. Important source regions are near the step upper corner, and the flow
in this area is similar regardless of the step height. On the other hand, the Green’s
function is more compact for smaller steps and decays faster away from the step,
causing the effective source region to be smaller for the similar sources. For the
forward facing step, the disparity in sound level between steps of different heights
is caused by not only the Green’s function but also the acoustic source, which is
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heavily modified by the step. The Lighthill stress component associated with vertical
velocity increases significantly as the step height is increased. For the same step height
(say, B01 and F01), acoustic source strength is responsible for different sound levels
between backward and forward steps.

6. Role of diffraction
Similarities of the flow near the step upper corner among all backward steps

(figure 20a–d, and figure 21a) suggest that important source terms are relatively
insensitive to the step height, and that the sound generation is dominated by the
Green’s function effect, or acoustic diffraction. As mentioned previously, acoustic
source mechanisms for flow over surface irregularities can be classified into two broad
categories: diffraction and turbulence modification (see e.g. Howe 1989; Yang & Wang
2009). The former is caused by the diffraction of the unsteady hydrodynamic pressure
by surface inhomogeneity through the Green’s function, and is present even if the
flow is not affected by the surface inhomogeneity. To check if the backward step is
diffraction-dominated, a numerical experiment is carried out in which the step flow
is replaced by an equilibrium turbulent boundary layer over the backward step in the
sound calculation. In this hypothetical flow, the turbulent boundary layer continues
downstream of the backward step at the same height as the step as though the step did
not exist. This is reasonable because, as seen in figure 17, the mean streamlines shortly
after separation (in the important source region) are nearly parallel continuations of
those in the boundary layer. Lighthill stresses obtained from LES of the flat-plate
boundary layer are used together with the Green’s function for the backward step to
compute the sound source via (4.7). The sound calculated in this manner removes the
effect of source field modification (turbulence distortion and generation) by the step
and is therefore representative of diffraction sound. The approach described above is
analogous to the analytical approach taken by Howe (1989, 1998), who calculated the
sound produced via diffraction of frozen boundary-layer pressure field over steps.

Figure 22 compares the frequency spectra of the sound produced by the real and
hypothetical flows over backward facing steps of different heights. The differences
between the real and hypothetical flows are relatively small (no more than 2.5 dB),
and suggest that the sound produced by the backward facing steps may be crudely
approximated using source terms from an equilibrium boundary layer in the frequency
range considered. In other words, the backward step sound is indeed dominated by
diffraction for all step sizes, and the turbulence modification by the step is small.
As can be observed in figure 16, the flow structures immediately downstream of the
backward steps are not much different from those in the upstream boundary layer.
Morris & Foss (2003) observe experimentally that outside a ‘subshear layer’, which
is thin near the step, the turbulence statistics following a backward step represent a
continuation of the upstream boundary layer. Furthermore, note that in figure 22 the
diffraction-based calculation captures the basic trend in the shift of peak frequency,
which becomes lower as the step height increases. This is entirely due to the Green’s
function; it decays slower for a larger step height, and more eddies of larger size
(lower frequency) present in the upper part of the boundary layer participate in sound
production.

The same diffraction analysis is not performed for forward facing steps because it
is difficult to define a hypothetical ‘frozen’ source field. The streamlines in figure 17
are severely bent near the forward steps, making passive convection less realistic.
Nonetheless, some inferences about the relative importance of diffraction and source
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Figure 22. Comparison between sound spectra produced by realistic backward facing step
flows and by hypothetical backward facing step flows with source terms from an equilibrium
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from backward facing step flows; , source from equilibrium boundary-layer flows.

modification can be drawn by a comparison with the backward step cases. For the
smallest step (h+ = 12), which is located in the buffer region of the boundary layer,
the sound spectrum is only slightly higher than the backward-step spectrum, and the
flow field is not much perturbed by the step (cf. figure 16h). Hence, diffraction is the
major mechanism for sound production. As the step height increases, the increase in
sound spectral level far exceeds the corresponding increase for backward steps, which
is representative of diffraction effects. Thus, turbulence generation and modification
by the steps play a major role for the three larger forward facing steps. They produce
strong source fields near the steps, which lead to strong sound radiation through
diffraction. This conclusion is also supported by the behaviour of source distributions
shown in figure 20.

7. Conclusion
LESs of turbulent boundary-layer flow over forward and backward facing steps

have been carried out to study sound generation. The Reynolds number based on the
step height varies from 21 000 to 328 as the step height changes from 53 % to 0.83 %
of the boundary layer thickness. The predicted wall pressure fluctuations from the
largest step simulations agree well with the experimental measurements of Farabee &
Casarella (1984, 1986) in terms of the r.m.s. values and frequency spectra.

Sound generated by the steps was computed using Lighthill’s theory with an
approximate Green’s function for an acoustically compact step height (Howe 2003),
which is valid for low-Mach-number flows over a wide range of frequencies. The use
of analytical Green’s function allowed the acoustically important source regions to be
readily identified and analysed. The steps act primarily as a dipole source aligned in
the streamwise direction as indicated by Howe (1989). In agreement with experimental
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findings of Farabee & Zoccola (1998), the flow over a forward step emits sound that
is significantly stronger than that from a backward step for step heights exceeding the
buffer layer. This is because the acoustic source terms are larger in magnitude and
located closer to the upper corner of the step where they are weighted heavily by the
Green’s function.

The effect of step height on radiated sound pressure was studied with four different
step heights. Detailed analyses of flow field and Green’s function weighted acoustic
sources reveal different source mechanisms for the backward and forward steps, which
explain the different step height dependence of sound pressure levels. The sound
generation by the backward step is dominated by diffraction of the boundary layer
source field which is not much affected by the step in the acoustically important region.
The Green’s function is the main cause for differing sound levels among backward
steps of different sizes. For forward steps, different sound levels from varying step
heights are attributed to not only diffraction (the Green’s function) but also, more
importantly, the acoustic source modification by the step, most notably associated
with the strong vertical velocity in front of the step. As the step height decreases,
source modification becomes less significant, and sound spectrum approaches that of
the backward step in the diffraction limit.
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Appendix. Evaluation of the Lighthill integral in § 4.1
When G(x, ω; y) in (4.4) is differentiated twice with respect to y, we obtain
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(A 1)

The quadrupole terms can be neglected based on the compact step height
approximation: kh � 1. Furthermore, for an observer located in the acoustic and
hydrodynamic far field (kr 	 1 and r 	 h), we retain only the leading-order terms in
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From (4.4), the only non-zero terms of ∂2Ym/∂yi∂yj and ∂2Y ′
m/∂yi∂yj are those with

m = 1 and i, j = 1 and 2. Recognizing that r1 = r ′
1 and Y1 = Y ′

1, we arrive at (4.5),
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Substituting (A 3) into the volume integral in (4.2) and noting that r1 = r cos θ (θ is
the angle between r and positive x-axis) and r ≈ |x| ≈ r ′ for a compact source lead
to

p̂(x, ω) =

∫
V

T̂ij ( y, ω)
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d3 y.

Further, noting that ∂2Y1/∂yi∂yj is a function of y1 and y2 only, we obtain (4.6),
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where

D(t) =

∫ ∫
∂2Y1

∂yi∂yj

Qij (y1, y2, t) dy2 dy1

and

Qij (y1, y2, t) =

∫
Tij ( y, t) dy3.

The function Y1(y1, y2) is obtained by solving an equivalent potential flow problem
with Schwartz–Christoffel transformation. The transformation from the physical Z-
plane (Z = y1 + iy2) to the transformed ζ -plane (ζ = ξ + iη), which maps the points
Z = 0 and Z = ih into ζ = − 1 and ζ = 1, respectively, is given by

Z =
h

π

{
± ln(iζ +

√
1 − ζ 2) + i

√
1 − ζ 2

}
+ i

h

2
, (A 5)

where h is the step height. The negative sign in front of the natural logarithm is for
the transformation for the backward step, which maps Z = ih and Z =0 into ζ = − 1
and ζ = 1, respectively. The complex potential W in the ζ -plane with free-stream
velocity U0 is

W (ζ ) = Y1 + iΨ =
U0h

π
ζ, (A 6)

where Y1 and Ψ are analogous to the velocity potential and stream function,
respectively, in a potential flow.
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